
rspa.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

glaciology, geophysics, mathematical

modelling

Keywords:

subglacial till, glacier dynamics, basal

sliding

Author for correspondence:

K.L.P. Warburton

e-mail: klpw3@cam.ac.uk

Shear dilation of subglacial till
results in time-dependent
sliding laws
K. L. P. Warburton1,2, D. R. Hewitt3 and J.

A. Neufeld2,4,5

1Thayer School of Engineering, Dartmouth College,

Hanover, NH 03755 USA
2Department of Applied Mathematics and Theoretical

Physics, University of Cambridge, Wilberforce Road,

Cambridge CB3 0WA, UK
3Department of Mathematics, University College

London, 25 Gordon Street, London, WC1H 0AY, UK
4Centre for Environmental and Industrial Flows,

University of Cambridge, Madingley Rise, Cambridge

CB3 0EZ, UK
5Department of Earth Sciences, Bullard Laboratories,

University of Cambridge, Madingley Rise, Cambridge

CB3 0EZ, UK

The dynamics of glacial sliding over water-saturated
tills are poorly constrained and difficult to capture
realistically in large scale models. Experiments
characterise till as a plastic material with a pressure-
dependent yield stress, but the subglacial water
pressure may fluctuate on annual to daily timescales,
leading to transient adjustment of the till. We
construct a continuum two-phase model of coupled
fluid and solid deformation, describing the movement
of water through the pore space of a till that is
itself dilating and deforming. By forcing the model
with time-dependent effective pressure at the ice-
till interface we infer the resulting relationships
between basal traction, solid fraction, and rate of
deformation. We find that shear dilation introduces
internal pressure variations and transient dilatant
strengthening emerges, leading to hysteretic behaviour
in low-permeability materials. The result is a time-
dependent effective sliding law, with permeability-
dependent lag between changes in effective pressure
and the sliding speed. This deviation from traditional
steady-state sliding laws may play an important role
in a wide range of transient ice-sheet phenomena,
from glacier surges to the tidal response of ice streams.
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1. Introduction
The fast-flowing ice streams and outlet glaciers of the Antarctic and Greenland ice sheets flow at
rates several orders of magnitude faster than the slowly moving ice around them [1]. The majority
of this speed difference is due to the much larger basal velocity of the ice in these regions, sliding
over and inducing deformation in the weaker sediment below, known as subglacial till [2,3].
Since these ice streams control the majority of ice flow out of the ice sheets, understanding and
modelling the processes occurring at the ice-till interface are of key importance in predicting the
future dynamics of the Antarctic and Greenland ice sheets [4].

Compared to the bedrock below slower-flowing regions, till is a weaker material, comprised
of water-saturated, clay-rich sand or pebbly mud. Water pressure variations in the pore space
between grains strongly affects the bulk strength of the till, and the resistance it provides to
the flow of the ice above. A key quantity for determining the ice dynamics is the effective
pressure N , the difference between the ice overburden pressure and the pore water pressure.
Many experiments have shown that till is well-described as a plastic material whose yield stress
τb depends linearly on N through a roughly constant friction coefficient µ= τb/N [3,5–7].

However, water pressure in the subglacial environment is not constant over time; it fluctuates
on timescales from hourly (tidal forcing, daily surface melt) to yearly (summer melt season)
to multi-decadal, accompanied by a response in the glacier surface speed [8–11]. Nor are these
pressure changes necessarily spatially uniform [12,13]. Increasingly, observations [9], simulations
[14,15], and experiments [16] have shown the potential for transient adjustment of basal dynamics
to introduce hysteresis and lag between changes in effective pressure and changes in sliding
speed, in settings dominated by either hard-bedded or soft-bedded sliding.

Sliding laws, which link traction at the ice-bed interface τb, subglacial effective pressure N ,
and the sliding speed of the ice ub, are usually formulated in terms of steady-state values of
these parameters [4,17,18]. Thus when these laws are incorporated into large scale models, an
instantaneous relationship is assumed between changes in effective pressure and sliding speed.
But when the changes in basal conditions occur on a timescale comparable to the transient
adjustment of the till, we would also expect this transient drag to play an important role in setting
the dynamics of ice flow [14,16].

It has long been noted [3,5] that acceleration after a decrease in effective pressure can lead to
shear-driven dilation of the till. The consequent increase in pore space, transient change in pore
pressure, and the accompanying increase in yield stress have been proposed as self-regulatory
mechanisms that limit the impact of varying subglacial conditions on sliding speed. These
‘dilatant strengthening’ phenomena are not observed in dry till, but are a transient feature in wet
till, which suggests that pore-pressure variations and the associated flow of water play a key role
in determining the till response [19]. The processes occurring in the till - grain rearrangement [20],
induced water flow and pressure diffusion - take time, setting natural timescales for the transient
response of the subglacial environment.

In this paper we construct a coupled model of till deformation, shear dilation, and the water
flow through this changing environment. In the time-dependent case we track the flow of water
in and out of the pore space and calculate the pressure gradients needed to drive this flow.
We construct our model of the subglacial till from the simplest possible set of physically based
equations, describing mass conservation and force balance to construct a general framework. For
even simple forcing we show that complex behaviour emerges, without the need to resort to any
ad-hoc parametrization. Within this setup we make use of newly derived continuum models of
water-saturated granular rheology to model the response of subglacial till to transient forcing
[14,21–23]. Similarly to [14] we observe diffusion of pressure fluctuations through the depth of
the till in response to surface conditions, but we interpret this response in terms of changes
in porosity and analytically predict the resultant sliding law. Recently, models for the transient
evolution of basal traction based on a rate-and-state friction (RSF) framework have been applied
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Figure 1. A diagram showing steady shear, indicating the notation used. Note z is depth from the ice-till interface

(downwards).

to the dynamics of glacier beds [16,24,25]; we discuss this transient friction in terms of the pore-
scale physics, to understand the link between the RSF parameter values and the characteristics of
the subglacial till.

We verify that the steady-state deformation of the till predicted by our model is consistent with
experimental results and field observations. We then use the time-dependent model to explore
the impact of shear dilation on transient water pressure gradients within subglacial till, and the
resulting relationship between basal traction, effective pressure, till solid fraction and deformation
rate at the ice-till interface. We predict the amplitude and lag of the deformation in response to a
range of frequencies of pressure forcing, allowing us to derive a time-dependent sliding law for a
water-saturated deformable bed.

2. Governing equations and general set-up
In this study, we model the dynamic response of a deep layer of till to an imposed (possibly
time-dependent) normal stress and shear stress applied at its surface. We assume that there is no
variation of the system in the horizontal direction (thus neglecting larger-scale effects, such as
ploughing of clasts), and that the solid fraction of the till being denser than water is the primary
reason for vertical variation in till properties and dynamics.

We start by considering the equations for mass conservation and force balance within a one-
dimensional slice of till. We take coordinate axes such that shear is applied in the x-direction,
with the z-axis in the direction of gravity (figure 1). The subglacial till comprises of a solid
granular matrix with density ρs, solid volume fraction φ, and which deforms continuously with
velocity vs = (us(z, t), 0, vs(z, t)), along with the water in the pore space, which correspondingly
has density ρw and velocity vw = (uw, 0, vw).

Tracking the movement of the grains, and hence the local solid mass, the solid fraction φ

evolves as
∂φ

∂t
+

∂

∂z
(vsφ) = 0, (2.1)

assuming that individual grains are incompressible. Conservation of water in the pore space,
taking the water as incompressible, is given by

∂(1− φ)

∂t
+

∂

∂z
[vw(1− φ)] = 0, (2.2)

and so total mass conservation is

∂

∂z
[vsφ+ vw(1− φ)] = 0. (2.3)
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Assuming that the till is sufficiently deep that there is a region where the grains are stationary,
with no vertical water flow, this can be integrated to give

vw =− φ

1− φvs, (2.4)

although if there is a background vertical drainage of water through the full depth of the till, (2.4)
could be modified by the inclusion of an additional flux.

Any flow of water through the pore space must be driven by a non-hydrostatic gradient in the
pore water-pressure pw , here described by Darcy’s law for the flux of water,

− k

η

(
∂pw
∂z
− ρwg

)
= (1− φ)(vw − vs). (2.5)

Here η is the viscosity of water and k(φ) is the permeability of the till, which in general is a
function of the solid fraction. Using (2.4) in (2.5) we have the simpler expression for the solid
vertical velocity

k

η

(
∂pw
∂z
− ρwg

)
= vs. (2.6)

Within the till, force-balance requires that gravity be balanced by gradients in stress. Hence the
divergence of the total stress tensor σ of the till is given by

∇ · σ=− [ρsφ+ ρw(1− φ)] g. (2.7)

The pore water pressure supports a portion of the stress on the till, and the effective stress tensor,
σe =σ + pwI , is the remaining stress experienced by the granular matrix, which may cause
deformation if exceeding the yield stress. From the force-balance equation (2.7), it is apparent
that the normal stress increases with depth (increasing z), and is modulated by the pore water
pressure,

∂pw
∂z
− ∂σezz

∂z
= ρwg +∆ρgφ, (2.8)

where ∆ρ= ρs − ρw . The horizontal shear stress is constant and the shear stress τb exerted at the
ice-bed interface is transmitted uniformly down through the till,

∂σexz
∂z

= 0 ⇒ σexz = τb. (2.9)

Combining (2.8) and (2.6), we see that vertical effective stress gradients in excess of the
background hydrostatic pressure gradient drive compaction and vertical motion of the solid
phase,

η

k
vs =

∂σezz
∂z

+∆ρgφ. (2.10)

Thus to find the vertical solid velocity vs that drives the evolution of the solid fraction via (2.1) we
need to calculate the distribution of effective stress felt by the till, σe, as a function of the stress
applied at its surface and the instantaneous solid fraction φ. We anticipate that we must describe
the rheology of the till, linking stress to velocity gradients and thus forming a differential equation
for vs, as well as the constitutive law for φ which determines its propensity to compact and create
anisotropy in the stress field.

We define two useful quantities by decomposing the effective stress into an effective pressure
N =− 1

3

(
σexx + σeyy + σezz

)
and the deviatoric stress σ̂ according to σe =−NI + σ̂, with

σ̂=

σexx +N 0 τb
0 σeyy +N 0

τb 0 σezz +N

 . (2.11)
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Similarly, we can decompose the shear rate S into a compaction (or dilation) rate ∂vs/∂z, and a
deviatoric shear rate γ̇ via

S =

 0 0 ∂us
∂z

0 0 0
∂us
∂z 0 2∂vs∂z

=
2

3

∂vs
∂z
I + γ̇, (2.12)

γ̇ =

− 2
3
∂vs
∂z 0 ∂us

∂z

0 − 2
3
∂vs
∂z 0

∂us
∂z 0 4

3
∂vs
∂z

 . (2.13)

In this paper we restrict ourselves to considering isotropic materials for which the deviatoric
stress and deviatoric shear rate are parallel, that is

γ̇

γ̇
=
σ̂

σ̂
, (2.14)

where non-bold symbols denote the magnitude of a tensor, M = |M |=
√

1
2 (MijMij). By

comparing components, we see that σexx = σeyy , and

σ̂=

√
τ2b +

3

4
(σezz +N)2, (2.15)

γ̇ =

√
∂us
∂z

2

+
4

3

∂vs
∂z

2

. (2.16)

A plastic material has a yield stress below which no flow occurs, and for which additional
applied shear stress above the yield stress results in increasing amounts of deformation. The yield
stress of till has been widely observed to depend linearly on its effective pressure [3,6], so we
expect a yield condition of the form σ̂= µ1N . Hence in general we can write the rheology of a
yield-stress till as

γ̇ =

{
γ̇(σ̂, N) σ̂ > µ1N,

0 σ̂ < µ1N,
(2.17)

where µ1 is a static friction coefficient, with µ1 ∼ 0.5 for till [6]. We expect the shear rate to increase
with shear stress, ∂γ̇/∂σ̂ > 0, and decrease with effective pressure (since the yield stress increases)
so ∂γ̇/∂N < 0. If the shear stress is close to the yield stress, the general leading-order form of the
shear rate will have some power-law dependence γ̇ =C(σ̂ − µ1N)a on this stress difference.

To evolve the porosity by (2.1), the solid velocity vs needs to be calculated as a function of φ
only. Thus we need an expression for ∂σezz/∂z in (2.10). By combining (2.14) with a generalised
rheology (2.17), the dilation (or compaction) rate during shear is

∂vs
∂z

=
3γ̇

4

σezz +N

σ̂(γ̇, N)
, (2.18)

meaning that if γ̇ and N can be determined in terms of σezz and φ only, (2.18) and (2.10) can be
combined to give a second-order differential equation for vs(φ).

Since τb is constant in space, we can use the definition of σ̂ (2.15) and the rheology (2.17) to
write γ̇ = γ̇(σezz , N). Thus all that is needed to close the system is a constitutive law relating the
solid fraction to local values of effective pressure and shear rate,

φ= φ(γ̇, N). (2.19)

On substituting for γ̇(σezz , N) this equivalently provides an expression for effective pressure of
the form N =N(σezz , φ). Models based on critical state solid mechanics would assume that the
solid fraction depends only on N , which simplifies this final step to N =N(φ). However, since
it is readily included in this framework, we leave open the possibility of shear-rate dependence.
Lower packing fraction at higher γ̇ is observed in tills [26,27] and granular flows [21]. As we shall
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show, shear-dilatancy of this form alters the strength of the induced water-pressure perturbations
and the timescale of the transient response.

These governing equations describe the response of the till to the conditions at the ice-till
interface, and in general can be forced by changes in effective pressure, shear stress or sliding
speed. Solving these equations, we can calculate the transient response of the depth profiles of
effective pressure, and we can then determine the shear rate, depth of the shear zone, surface
speed, compaction rate, and solid fraction of the till. Here we will restrict our attention to the
effect of changing effective pressure on surface speed when basal traction is kept constant, but
other types of forcing can be analysed similarly.

This general set-up can be used to model a wide range of materials and produce a variety of
behaviours. To model a specific scenario, we need to impose a constitutive relationship for the
rheology (2.17) of the solid phase and the form of the solid fraction (2.19). In section 3 we shall
show the results for a specific choice of constitutive laws, but for the rest of this section we discuss
general behaviour resulting from this formulation.

(a) Steady state deformation and the diffusive limit of pressure variations
The extent to which till deforms in response to the stress exerted on it by the ice above depends
on the shear rate throughout the deforming region, and the depth of the deforming region itself.
The depth of the deforming region can be much shallower than the available depth of till, and this
depth emerges as a result of the forcing at the ice-till interface [28]. Unless there is some shallow
immovable layer on which the till rests, the depth to which it deforms is an important part of
setting the sliding law and till transport.

In steady state, the till is neither compacting nor dilating and so vs = 0. Thus by (2.14) the
effective pressure isN =−σezz , the shear stress σ̂= τb, and therefore (2.10) indicates thatN simply
increases with depth through the till. Hence the yield strength of the till µ1N also increases, until
it exceeds the shear stress τb applied by the ice.

From (2.10) the effective pressure N increases from its value N0 at the ice-till interface as

N(z) =N0 +

∫z
0
∆ρgφ dz. (2.20)

If φ remains close to a maximum value φm, we have N ≈N0 +∆ρgφmz, and this depth-
dependence naturally defines the depth of the yield surface [14,29] as

z0 ≈
τb − µ1N0

µ1∆ρgφm
. (2.21)

In the deforming region above this depth, (2.17) gives the shear rate, and so the flow rate of till is
given by

us(z) =

∫z0
z
γ̇(τb, N0 +∆ρgφmZ) dZ. (2.22)

This equation can used to constrain the rheology of the till given a depth-profile of deformation.
Taking as before the general power-law form for the leading-order behaviour of the shear rate
when the yield stress is exceeded, γ̇ =C(σ̂ − µ1N)a in (2.17), then

us(z) =

∫z0
z
C [τb − µ1(N0 +∆ρgφmZ)]a dZ =

C(µ1∆ρgφm)a

a+ 1
(z0 − z)a+1, (2.23)

and the total till flux is

us(z) =

∫z0
0
us(z) dz =

C(µ1∆ρgφm)a

(a+ 1)(a+ 2)
za+2
0 . (2.24)

Thus the surface of the till moves with speed

ub =
C(τb − µ1N0)a+1

(a+ 1)µ1∆ρgφm
. (2.25)
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If we neglect slip between the surface of the till and the bed of the ice, and thus interpret ub as the
sliding speed of the ice, we can invert for the traction law

τb = µ1N0 +

[
(a+ 1)µ1∆ρgφm

C
ub

]1/a+1

, (2.26)

where the second term is a small strengthening away from τb = µN0, regularising the speed while
allowing for close-to-plastic behaviour.

In the limit of small perturbations about this steady state, the changes in porosity are small
and flow is nearly horizontal, so σezz ≈−N , which greatly simplifies (2.10) so that (2.1) becomes
a diffusion equation for changes in effective pressure,

dφ

dN

∂N

∂t
=
kφ

η

∂2N

∂z2
. (2.27)

Since changes in solid fraction with effective pressure may generally be written as

dφ

dN
=
∂φ

∂N
+
∂φ

∂γ̇

∂γ̇

∂N
, (2.28)

the diffusion coefficient is

D=
k

ηα
, (2.29)

with compressibility

α= α0 + αγ̇ =
1

φ

∂φ

∂N
+

1

φ

∂φ

∂γ̇

∂γ̇

∂N
. (2.30)

The static compressibility of the till α0 =
∂φ/∂N
φ is augmented by a shear dilatancy αγ̇ = 1

φ
∂φ
∂γ̇

∂γ̇
∂N .

The reduction of the diffusion coefficient compared to the non-shearing case can therefore result
in longer-lasting transient dynamics.

(b) Transient dynamics
Changes to the conditions at the ice-till interface alter the shear rate and drive the steady solid
fraction towards a more dilated or compacted equilibrium. But in water-saturated till, the pore
space is filled with water, so to achieve this new steady state with an altered volume of pore space,
water must be driven through the till by non-hydrostatic pore-pressure gradients, which in turn
affect the strength of the till and the shear rate at depth. This continues until a new steady-state
balance is achieved between the surface forcing and the profiles of shear and solid fraction in the
till, when the pore pressure is once again hydrostatic.

From the effective pressure evolution described in (2.27), given the total depth of the shear
layer (2.21), the timescale for this process is

T ∼ z20
D
∼ ηα(τb − µ1N0)2

k(µ1∆ρgφm)2
. (2.31)

The key parameters in setting this equilibration timescale are the permeability of the till k,
the water viscosity η, and the till compressibility α. Since pressure gradients are inversely
proportional to k, very permeable till will re-equilibrate rapidly, while very impermeable tills take
so long to respond that the solid fraction appears almost fixed and the induced pressure gradients
persist, not allowing the till to accelerate. The dependence on η provides a partial explanation for
the vastly different response of dry till to transient forcing. Since air has much lower viscosity
than water, the induced pressure gradients are much smaller, and the transient response is almost
instantaneous in dry granular media. If k and η are known for a sample of till, measuring the
timescale for re-equilibration following a step-change in forcing provides a way to constrain α.

When the surface shear rate increases and the till dilates, water is sucked into the till by
decreasing the pore pressure at depth, increasing the effective pressure and strengthening the
till. This is a negative feedback that transiently limits the shear rate. Conversely, when the surface
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shear rate decreases and the till compacts, the water forced out of the pore space supports more
of the weight of the ice and keeps the till flowing. In low permeability tills, the induced transient
pressure gradients can be very large, even for small compaction rates.

(c) Periodic sliding law
Many processes providing water to the subglacial environment are periodic or quasi-periodic
in nature, including pressure variations due to daily surface melt cycles or from tidal forcing
propagating up from the grounding line. Glaciers also accelerate and decelerate over the same
timescales, suggesting a link between variations in subglacial water availability and surface
velocities modulated by changes in the basal traction [9,11,30]. Classical sliding laws assume an
instantaneous relationship between effective pressure and sliding speed. We have described how
dilatancy can introduce a time dependence, or lag, between the pressure forcing and the velocity
response and that induced water pressure gradients can buffer the till at depth from the imposed
pressure fluctuations. In this section we explore the response of water-saturated till to periodic
fluctuations in effective pressure and examine the effect on the sliding law for a range of forcing
frequencies and till permeabilities.

For simplicity, we consider a periodic sinusoidal forcing in effective pressure applied at the
ice-till interface, while maintaining a fixed basal shear stress. When the amplitude of the pressure
forcing is small, the governing equations may be linearised and analytic expressions for both
the phase lag and relative amplitude of the velocity response (compared to steady state) can be
calculated.

If the forcing is sufficiently slow compared to (2.31), the till is able to dilate or contract
throughout the depth of the deforming region, and the pore pressure can equilibrate relatively
rapidly. The transient effects happen on a timescale that is short compared to the forcing, so we
recover an almost instantaneous sliding law, with the basal speed responding to every change
in effective pressure. In contrast, if the frequency of the forcing is rapid the till cannot respond
throughout the depth of the shear layer. The induced pore water pressure persists and counteracts
the forcing, and the result is a sliding law that only depends on the average effective pressure,
filtering out the fluctuations.

If the pressure forcing is

N0 = N̄ +∆Ne−iωt (2.32)

with ∆N� N̄ and taking the real part is implied, then the leading-order response is controlled
by the diffusion equation (2.27). Given the linearity of the response to small variations, the surface
velocity response takes the form

us(0, t) = ub(N̄) + û= ub(N̄) +A
dub
dN

∆Ne−i(ωt−θ), (2.33)

where A is the relative amplitude and θ is the phase lag. For quasi-instantaneous behaviour at
low frequencies, A→ 1 and θ→ 0. Induced pressure perturbations act to decrease the amplitude
A (buffering the till from rapid fluctuations) and increase the phase lag θ.

To find A and θ, we solve (2.27) with (2.32) as a boundary condition, and find that the
perturbation to N is given by N̂ =∆Ne−λz−iωt with Dλ2 =−iω. Again using the leading order
form of the shear rate in (2.17) of γ̇ =C(τb − µ1N)a, the perturbation to the shear rate becomes

ˆ̇γ =Ca [µ1∆ρgφm(z0 − z)]a−1 µ1∆Ne
−λz−iωt. (2.34)

Thus integrating from the static base of the shear layer to the surface implies that the perturbation
to the surface velocity takes the form

û=

(
a

za0

∫z0
0

(z0 − z)a−1e−λz dz

)
dub
dN

∆Ne−iωt. (2.35)
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and the amplitude and lag of the velocity response are therefore

Aeiθ = a

∫1
0

(1− x)a−1e−λz0x dx. (2.36)

A clear transition appears when the timescale of dilatancy is small compared to the period of the
pressure fluctuations T = 2π/ω, or equivalently the perturbation reaches a depth comparable to
that of the shear layer, when λz0 ∼ 1. The transition frequency is thus given by

ω∼ D

z20
∼ k(µ1∆ρgφm)2

ηα(τb − µ1N̄)2
∼ k

ηα

[
C(µ1∆ρgφm)a/2

ub

]2/(a+1)

. (2.37)

In the limit of rapid perturbations, λz0� 1 and the rapid fluctuations diffuse through the top
of the till only before decaying. Equation (2.35) therefore reduces to

û=
a

λz0

dub
dN

∆Ne−iωt =
aµ1∆ρgφm

τb − µ1N̄

√
k

ωηα

dub
dN

∆Ne−i(ωt−π/4), (2.38)

which corresponds to a maximal phase lag of π/4, and an amplitude that depends on
√
k/ω.

The deformation lags behind the pressure forcing by a time T/8, which is linear in the period of
forcing.

For slow perturbations with λz0� 1, the perturbation makes it to the base of the shear layer,
and we instead recover exactly the linearised form of the steady-state sliding law, as

Aeiθ = 1− λz0
a

+O
(

(λz0)2
)
, (2.39)

so A→ 1 and θ∼
√
ω→ 0. The till responds to every change in effective pressure through the full

depth of the till in this limit. The time lag continues to grow with the period of forcing, but now
only like

√
T .

The transition frequency described by (2.37) is strongly dependent on the permeability, which
is to be expected since lower values of till permeability require larger pressure gradients to drive
the same amount of flow according to Darcy’s law. This strengthens the buffering effect, and
allows the till to act as a filter against high frequency variations in water pressure. By contrast, in
high permeability tills, small induced pressure gradients equilibrate nearly instantaneously, and
the response of the till mirrors the forcing.

3. Calculations with a granular rheology
To explore the behaviour of our coupled two-phase model in more detail, and extend it beyond the
linear regime, we need to impose constitutive laws for γ̇(σ̂, N) and φ(γ̇, N). A granular rheology
provides an attractive starting point for modelling the flow of a sample of till comprised largely of
grains. Several key properties of till are also observed in granular media: nearly plastic behaviour
with a pressure-dependent yield stress, shear dilation, and rapid flow once the yield stress is
exceeded.

The granular literature defines two non-dimensional numbers which parametrise the rheology
of granular flows. In granular media where grain-grain friction provides the dominant resistance
to flow, the inertial number

I =
γ̇d√
N/ρs

, (3.1)

where d is the grain diameter, determines both σ̂= µ(I)N and φ= φ(I). This fits readily into the
general framework introduced above since I = I(γ̇, N), and has been used by [14,29] to describe
the rheology of till. However, in situations where the pore fluid modulates the inter-granular
friction, we would expect the appropriate dimensionless scaling of the shear rate to instead be
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given by the viscous inertial number

Iν =
ηγ̇

N
. (3.2)

A transition between the two regimes occurs when I2 ∼ Iν [31]. For the values of these parameters
relevant to subglacial till (table 1), we have I2� Iν� 1, implying that the viscous scaling is
dominant. The leading-order form of the experimentally measured µ(Iν) rheology [22] is

µ= µ1 +M

√
ηγ̇

N
, (3.3)

where µ1 is the static friction coefficient, and M is a constant describing the rate-dependence of
the material after yield. Thus we can invert for the shear rate

γ̇ =
1

ηM2
(σ̂ − µ1N)2N−1. (3.4)

The inertial-number dependent form of the solid fraction proposed by the same experiments is
φ(Iν),

φ=
φm

1 + b
√
ηγ̇
N

. (3.5)

It should be noted that subglacial inertial numbers are much lower than the values achieved in
the mono-disperse granular experiments. However, [32] showed from DEM simulations that φ
does continue to be a function of inertial number even in the near-static regime. This form of φ
loses dependence on N when γ̇ = 0, in contrast to a critical-state packing fraction φ(N), which
conversely has no dependence on γ̇. While a transitional form of φ between critical state and
inertial of the form φs(N)− f(I) has been suggested [33], given the lack of data to constrain
a model of this form for till and since the general dynamics depend to leading order only on
the total compressibility α, here we only show examples calculated using (3.5). In this case, the
compressibility in (2.30) is

α= α0 + αγ̇ =
bµ1
τb

√
ηγ̇

N
+

bµ21
τbM

(3.6)

and the shear-dilatancy (αγ̇ ) dominates over the static compressibility (α0) at subglacial values of
shear rate and effective pressure.

In steady state, sinceN increases with depth as given by (2.20), we obtain profiles for the shear
rate and solid fraction with depth. To leading order in the inertial number these reduce to

γ̇ ≈ N0

η

(
τ − µ1N0 − µ1∆ρgφmz

MN0

)2

, (3.7)

φ≈ φm
(

1 +
τ − µ1N0 − µ1∆ρgφmz

MN0

)−1

, (3.8)

as shown in figure 2.
Integrating through the yielded region we find that the speed of the till at the ice-till interface,

ub = us(0), recovers a power law relationship between the sliding speed, driving stress, and
effective pressure. This can equivalently be expressed as a traction law,

τb = τ(ub) = µ1N0 + (3ηµ1∆ρgφmM
2ubN0)1/3, (3.9)

This forms a granular equivalent to, or physical justification for, commonly used basal traction
laws for ice sheet models, regularising the sliding speed while allowing for close to plastic
behaviour. Perhaps unsurprisingly, the traction is dominated by the first, plastic, term since the
rate-strengthening second term is typically only a very small correction given the relative sizes of
ub and N0 in subglacial settings (figure 3c).
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Figure 2. Steady-state profiles of (a) shear ∂us/∂z, (b) horizontal speed us, and (c) solid fraction φ for different

values of effective pressure, with τb − µ1N0 = 0.25, 0.5, 0.75, 1 kPa increasing in the direction of the arrow. Solid

lines show numerically calculated profiles, while dashed lines show the leading order expressions given in (3.7-3.8,3.11).

The agreement is particularly good for low shear rates, as the leading order approximation is valid for small Iν .

The total till flux can be found by integrating once more through the deforming region, and
we find that to leading-order the steady-state till flux is

qs =
φm

12η(µ1∆ρgφmM)2
(τb − µ1N0)4

N0
. (3.10)

Constraining the till flux is important for estimates of glacial erosion rates, and therefore setting
the coupling between ice dynamics and subglacial topography that builds a wide array of
bedforms. Understanding how ice sheet behaviour results in bedform construction can be used
to interpret the topographic record of paleolithic ice streams, and exploit features from below
current ice sheets to constrain till rheology.

(a) Fit to observations
The majority of experimental data on the deformation of subglacial till comes from ring-shear
tests on thin layers of till, so the effective pressure and shear rate are close to uniform across the
shearing region. This allows for comparison of the local form of µ as a function of N and γ̇, but
not the depth profiles. The conclusion from ring shear tests is that µ≈ 0.5 and that this value is
insensitive to the shear rate or effective pressure (see [6] for compiled data from 7 different ring
shear tests). While our traction law is consistent with this conclusion, in that µ changes by only a
few percent over speeds of up to kilometres per year (figure 3c), the lack of sensitivity means this
steady-state data does not place a strong constraint on many of our model parameters.

It is perhaps more informative to look at in-situ deformation profiles from subglacial till
samples. Using a granular rheology (3.3) in (2.23) we predict a velocity profile

us ≈
M

3ηµ1∆ρgφm

(
τb − µ1N0 − µ1∆ρgφmz

MN0

)3

. (3.11)

The depth of shear zones under glaciers has been observed to range from centimetres to
metres [4,6,27]. Shear zone depths of this magnitude can be estimated from (2.21), the parameters
of which are well constrained, and require that the traction difference τb − µ1N0 ≈ 1kPa. Since
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Figure 3. In-situ depth profiles (blue symbols) from (a) [34] and (b) [35] are well matched by the theoretical profiles (red

lines) forM = 104.5 andM = 103.5 respectively. (c) The resulting traction law only deviates slightly from perfectly plastic

even for large values of M , comparable to laboratory results from [6] (converted from γ̇ to Iν using reported pressures).

Parameter Symbol Value Units
Fluid viscosity η 1.8× 10−3 kg m−1s−1

Density difference ∆ρg 1.6× 103 kg m−2s−2

Till permeability* k 10−11 − 10−19 m2

Surface shear τb 104 kg m−1s−2

Static friction µ1 0.5 -
Friction parameter M 104 -

Dilatancy parameter b 5× 104 -
Maximum solid fraction φm 0.733 -

Table 1. Parameters values used in the numerical model. *Unless otherwise stated, k= 10−12m2 is used.

the speed of till deformation is so low, (3.11) implies a large value of M , in contrast with
experiments on idealised mono-disperse granular media where M ∼ 1. In-situ measurements of
till displacement with depth [34,35] show good agreement with our steady-state profiles if we
takeM ∼ 104 (figures 3a and 3b). This suggests that once yielded, subglacial till has a much higher
resistance to flow than the mono-disperse smooth grains typical of granular experiments. As well
as geometric differences in the grains, a possible reason for this large resistance is that the clasts
may experience an effective viscosity much larger than that of water, due to the high clay content
in the soil, which would alter the appropriate scaling for the viscosity in the inertial number.

Finally we must constrain b, or equivalently α, using porosity variation with both γ̇ andN . The
static compressibility of clay-rich soils is on the order of 10−6 − 10−8Pa−1 [36], and experiments
on till samples [3] at fixed shear rate and varying N confirm α0 ∼ 10−7. By contrast, in-situ
profiles of porosity [27] in which γ̇ and N both vary with depth are consistent with b∼ 104 and a
much larger shear dilatancy of αγ̇ ∼ 10−4Pa−1. As noted for M , the value obtained for b is large
in comparison with previous granular experiments and may point to a higher effective viscosity
η of the interstitial fluid, increasing the sensitivity of µ and φ to the shear rate γ̇. Fortunately, since
b and M are both inversely proportional to the value of η used, our estimate of α∼ b/M remains
independent of this uncertainty in effective viscosity and we can be confident that our numerical
results capture a physically relevant regime for the transient response. The parameters used in
the numerical model are given in table 1.

To better constrain all the parameters of this model would require further steady and time-
dependent experiments on till. A systematic series of steady-state experiments on wet till would
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Figure 4. Behaviour of the system when the effective pressure at the surface is instantaneously decreased from N =

τb/µ1 toN = 0.975τb/µ1, with an initially fully compacted till. Plots show (a) the forcing τb − µ1N0, (b) surface velocity

response us(0), (c) increase in column height as the till decompresses, (d) depth of the yield surface, and (e) effective

friction coefficient µeff. Depth profiles show (f) deviation from maximum solid fraction φm − φ, (g) pore water pressure

deviation away from hydrostatic pw − ρgz, and (h) effective pressure N .

determine the applicability of wet granular models to till at low inertial number, and verify the
appropriate steady-state values of M and b. In particular, the model predicts a large increase
in α, and decrease in diffusivity, associated with even small amounts of shear-driven dilation,
and further experiments to explore this prediction would be highly valuable. Furthermore, to
assess the transient response of granular till, periodic experiments could be conducted to measure
the depth and frequency dependence of the response. Such experimental investigations would
provide invaluable insight into the time-dependent rheology of subglacial till, and would be a
robust test of granular models of the deformation of wet till.

The details of the dynamic rheological behaviour of till may have important implications for
the large-scale response of ice sheets to changes in basal conditions. In particular, granular till
models exhibit a wide range of behaviours such as dilatant strengthening, compaction, persistent
shear at depth, and sudden jamming, all of which may present as a frequency-dependent effective
sliding law.

(b) Dilatant strengthening
If the effective pressure at the surface is suddenly decreased (figure 4a), there is an instantaneous
acceleration at the surface as the yield stress decreases (4b). However, the till at depth does not
respond instantaneously. Instead, the decrease in effective pressure diffuses downwards through
the till (4h), along with an associated increase in shear rate and decrease in solid fraction (4f). The
sliding speed gradually increases towards the new equilibrium value. This transient response
of the sliding speed can be interpreted as a transient increase in till strength. To quantify this
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Figure 5. Behaviour of the system when the effective pressure at the surface is instantaneously increased from N =

0.975τb/µ1 to N = τb/µ1, with till porosity initially in steady state. Plots show (a) the forcing τb − µ1N0, (b) surface

velocity response us(0), (c) decrease in column height as the till compresses, (d) depth of the yield surface, and (e)

effective friction coefficient µeff. Depth profiles show (f) deviation from maximum solid fraction φm − φ, (g) pore water

pressure deviation away from hydrostatic pw − ρgz, and (h) effective pressure N . The till fully jams at t= 3.2 hours.

strengthening, we use the steady-state traction law (3.9) to define an effective friction coefficient

µeff(t,N0) =
τb − [3ηµ1∆ρgφmM

2us(0, t)N0]1/3

N0
. (3.12)

Here, if the till deforms less than would be expected in steady state, µeff >µ1, indicating dilatant
strengthening.

To understand the mechanisms behind dilatant strengthening, we consider the non-
hydrostatic component of the water pressure (figure 4g). As the till accelerates (figure 4b) and
dilates (figure 4c), the expansion of the solid matrix induces a water pressure gradient that
drives fluid into the increased pore space, lowering the pore water pressure at depth relative
to hydrostatic. Despite the decrease in effective pressure at the surface, throughout most of the
till the initial change in pore water pressure counteracts this surface change, and instead drives
a strengthening of the till at depth (figure 4e). This introduces a lag between the surface forcing
(figure 4a) and the response at depth (figure 4b), and hence a time dependence in the effective
basal drag law, as illustrated by the effective friction coefficient, µeff, in figure (figure 4e).

(c) Compaction, shear at depth, and jamming
If the effective pressure at the surface is increased, there is a small instantaneous deceleration of
the surface layer of the till, accompanied by compaction in this region. Similarly to the case of
dilation, it takes time for the effective pressure at depth to increase as the pore water pressure
re-equilibrates. The rate of deformation of the till therefore slowly decreases towards the new
equilibrium value.
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As the till compacts, water is driven upwards and out of the pore space by locally increased
pore pressures at depth (figure 5g). Thus the effective pressure (5h), and the till strength (5e), are
transiently lower than the new equilibrium. If the compaction is strong enough, the induced pore-
pressure gradients can be sufficient to counteract the background hydrostatic gradient, leading to
a decrease in effective pressure and till strength with depth (5h, early times). Thus the top layer
of till can slide along over a layer of weaker material below, even if it is not itself deforming.

As the effective pressure at depth increases, the yield surface moves upwards (figure 5d).
The till below the yield surface is fully compacted and stops deforming. As the overall rate of
compaction decreases, less water is driven out of the pore space and so the strength of the pore
water-pressure gradient is reduced. This increases the effective pressure, and the yield surface
migrates further upwards through the till, reducing the zone of compaction further. This positive
feedback can lead to a sudden shutdown of shear at depth as the till jams, as shown at late times
in figure (5).

Given the rich dynamics of compaction compared to the gradual diffusion of pore pressure
during dilation, this suggests that the system might exhibit complex hysteretic behaviour if the
pressure oscillates. Indeed, that is exactly what we see in the case of large-amplitude periodic
oscillations, as discussed in the following section.

(d) Periodic sliding law
The timescale for pressure diffusion and till compaction leads to the introduction of lag between
the applied stress and deformation in the case of periodic forcing. With the introduction of an
explicit rheology for the till, we can go beyond the linear calculation presented in section 2(c) and
demonstrate the wealth of non-linear features emergent from the two-phase model, including
periodic jamming and stick-slip motion in response to smoothly varying forcing.

To show first the linearised results, we take the pressure forcing to be periodic and sinusoidal,
N0 = N̄ +∆Ne−iωt, and use the granular rheology of (3.3) in the general formula for the
amplitude and phase lag of the velocity response (2.36). This gives a velocity perturbation

û=
2µ1[λ(τb − µ1N̄)− µ1∆ρgφm(1− e−λz0)]

λ2ηM2N̄
∆Ne−iωt =A

dub
dN

∆Ne−i(ωt−θ), (3.13)

where λ2 =−iω/D. These values ofA and θ are shown in figure 6, and clearly show the transition
that occurs when the timescale of dilatancy is small compared to the period of the pressure
fluctuations,

ω∼ D

z20
∼ k(µ1∆ρgφm)2

ηα(τb − µ1N̄)2
∼ kµ21(∆ρgφm)4/3

η5/3αM4/3τ
2/3
b u

2/3
b

. (3.14)

In the limit of rapid perturbations, λz0� 1 and the rapid fluctuations diffuse through the top
of till only before decaying. Equation (3.13) therefore reduces to

û=
2µ1(τb − µ1N̄)

ληM2N̄
∆Ne−iωt =

2µ1(τb − µ1N̄)

M2N̄

√
k

ωη3α
∆Neiπ/4−iωt, (3.15)

again showing the generic phase lag of π/4, and an amplitude that decreases as the frequency of
oscillations increases, until the speed of the till depends only on the average value of the effective
pressure. In effect, induced water-pressure variations buffer the till at depth from feeling the effect
of surface changes.

Slow perturbations, with λz0� 1, reach the base of the shear layer, and so the surface velocity
of the till changes as

û=
µ21∆ρgφmz

2
0

ηM2N̄
∆Ne−iωt =

(τb − µ1N̄)2

η∆ρ gφmM2N̄
∆Ne−iωt =

dub
dN̄

∆Ne−iωt, (3.16)

which is exactly the linearised form of the steady-state sliding law.
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Figure 6. Analytically calculated values of (a) the relative amplitude of the velocity response compared to steady stateA,

and (b) the phase lag θ/π. Quasi-steady behaviour corresponds to A= 1 and θ= 0, achieved for high permeability or

low frequencies.

As shown in figures 7a and 7b, the till velocity is approximately constant in response to
high frequency changes. As the frequency of forcing is decreased, the amplitude of the velocity
response increases and the phase lag reduces, so that the response traverses the steady-state
curve. This generic behaviour is seen both at small amplitudes (figure 7a), for which the above
linearisation holds, and for much larger amplitudes of forcing (figure 7b) under which the
velocity responds non-linearly. In both cases, it is the frequency of the fluctuation relative to
the transition frequency (3.14) that determines whether the velocity response depends only on
the average forcing, or is a quasi-instantaneous response following the steady-state sliding law.
Between the two limits, the phase lag combined with the significant amplitude of the velocity
response produces hysteresis loops, with sliding speeds remaining high during compaction, and
low during dilation.

The hysteresis in the system is exaggerated if, during forcing, the effective pressure at the
ice-till interface is high enough that τb <µ1N0. For frequencies below the transition frequency,
there is a smooth progression along the steady-state sliding law, with shear stopping when N0 >

τb/µ1 and resuming when it crosses that value again. More complex behaviour emerges when the
forcing is above the transition frequency, as rapid compaction can lead to an extented period of
continued flow at depth, followed by jamming (see figure 8). Once jammed, shear cannot restart
until the top layer of the till begins to yield again. Shear begins at the top of the till, and the yield
surface then moves down. This highly asymmetric process between the shutdown and start up of
shear gives a highly complex, stick-slip response of the till to simple periodic forcing.

4. Discussion
There are numerous instances where the transient response of ice sheets is important, from the
rapid response to subglacial flooding events, the daily or annual variation of meltwater supply to
the bed, and the sudden reduction in back-stress after the rapid disintegration of ice-shelves. To
describe these scenarios requires a coupling of ice dynamics and basal processes. Here we focus
on the response of ice streams to ocean tides, and comment on the relationship of the current work
to rate-and-state models of transient ice-bed friction.

(a) Tidal response of ice streams
When applying this time-dependent sliding law to an ice stream model, the main distinction is
whether the lag introduced by till dynamics is significant compared to the period of forcing, or
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Figure 7. Till surface speed for fluctuating effective pressure - trajectories are traversed in the direction of arrows. (a) For

small amplitude pressure perturbations, the velocity response is also sinusoidal, with some phase lag. As the frequency

increases, the amplitude decreases. At low frequency the steady-state sliding law is recovered. (b) For larger amplitudes

these trends are maintained, but there is a higher degree of hysteresis and the non-linear shape of the steady-state sliding

law becomes apparent.
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depth of the deforming region. Grey shading indicates times when the till is fully static.

whether an instantaneous sliding law remains appropriate. Since the velocity response to pressure
changes is only significant when the frequency of changes is slower than the permeability-
dependent transition frequency (2.37), this can be used as a constraint on the permeability of
subglacial till.
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At Rutford, despite the daily tidal forcing, the largest constituent of the velocity response
is at the fortnightly frequency [37,38]. This model provides two possible mechanisms for this
observation. The non-linearity of the till rheology may be sufficient to mix the daily frequencies
and generate the fortnightly signal in-situ, similar to the suggestion of [39]. In the supplementary
material we show the effect of forcing the model with two diurnal modes, and find that a weak
fortnightly signal is generated in the sliding speed. Alternatively, if a fortnightly component is
already present in the pressure signal before it reaches the upstream till, generated by the ice
dynamics (for example at the grounding line) [40,41], then the dynamic response of the subglacial
till may act as a low-pass filter, filtering out the daily signal and increasing the strength of the
fortnightly component.

Indeed, one important lesson from this modelling of transient effects is that care should be
taken when interpreting surface velocities as directly reflecting subglacial water pressures, both
in the timing and the magnitude of their fluctuations. Because the local velocity signal lags behind
the effective pressure, the time taken for glaciers to respond may not be the same as the time
for the water to transit through the subglacial environment - this could explain the timing of
slip events relative to the tidal cycle [11] or of the lag between borehole pressures and sliding
speeds [42]. Similarly, since the adjustment of the till porosity can buffer the sliding speed against
acceleration, inversions using an instantaneous sliding law may underestimate the magnitude of
pressure changes driving velocity perturbations [30,43].

Considering the slip-stick motion of the Whillans Ice Stream, it is noteworthy that this
continuum granular model is able to generate slip-stick cycles from a simple rheology, one that
also produces continuously varying flow when the mean effective pressure is only slightly lower.
This supports the view that the hydrology of the region results in the characteristic motion of the
Whillans Ice Stream [3,44]. However, the inclusion of further details of the elastic ice response,
which we have not modelled here, may be required to reproduce features such as secondary
slip events at low tide [45]. Another mechanism not included here is the short-timescale elastic
behaviour of the ice-till interface itself, which is known to generate seismic events and allow for
rapid acceleration [44]. This model is far from a complete description of the Whillans slip events,
but does show how intermittent sliding can result from a continuum model.

(b) Comparison to the rate-and-state friction framework
The rate-and-state friction (RSF) framework is a parametrisation of transient frictional responses
that is increasingly used to describe basal friction [16,24,25]. In the RSF framework, the detailed
characteristics of the basal dynamics are encoded in a single state variable Θ, which evolves
in response to changes in forcing over time towards a new steady value, leading to temporal
lag in the system. Our two-phase model similarly introduces a time lag between the forcing
and deformation due to the timescale of the porosity response. This similarity between the two
systems leads to the interpretation of the porosity structure as a state variable. Indeed, [25]
explicitly set the mean porosity of the till to be a function of Θ. Likewise, a comparison of the
predictions between the two models may lend physical meaning to the other parameters of the
RSF model.

In the RSF model, the friction coefficient µ= τb/N is given by the functional form

µ= µ0 + a ln

(
ub
u0

)
+ b ln

(
u0Θ

Dc

)
, (4.1)

where ub is the sliding speed, and Θ is a state variable that contains within it all the information
about the state of the bed [46]. In steady state Θ=Dc/ub, and µ0 is the value of µ at a reference
speed u0. The parameter a controls the initial "direct" response of µ to a change in sliding speed,
while a− b parametrizes the eventual change once the system has re-equilibrated.

In steady state, the friction coefficient

µ= µ0 + (a− b) ln

(
ub
u0

)
(4.2)
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qualitatively similar to

µ= µ1 + (3ηµ1∆ρgφmM
2ub/N

2
0 )1/3 (4.3)

for granular till, as the friction coefficient increases sub-linearly with sliding speed if a− b > 0.
This parallel is also noted in [7].

Different evolution equations forΘ are found in the literature [46], either taking the form of an
aging law,

dΘ

dt
= 1−

(
ubΘ

Dc

)p
, (4.4)

or a slip law,
dΘ

dt
=−ubΘ

Dc
ln

(
ubΘ

Dc

)
. (4.5)

While similar to the two-phase model in that the transient adjustment of the state of the bed
alters the drag away from the steady-state drag law, leading to initial strengthening before steady
conditions are recovered over longer timescales, we now have timescale of adjustment of Dc/ub,
which decreases with increasing sliding speed, in contrast to the two-phase model.

Further differences emerge in the predictions of the two models when considering the finer
details of the time-evolution of the friction. If we once more consider the response of this system
to a small periodic change in N of the form N̄ +∆Ne−iωt and observe the response in ub, we
may compare the resultant time-dependent sliding law to our two-phase model results. Both the
aging and slip law for Θ reduce to the same linearised form,

iωΘ̂=
û

ub
+
Θ̂ub
Dc

, (4.6)

so

µ̂=

(
a+

b

iωDc/ub − 1

)
û

ub
. (4.7)

If τb is held fixed then

û=−ubτb
N̄2

1− iωDc/ub
a− b− iωaDc/ub

∆Ne−iωt =
1− iωDc/ub

1− a
a−b iωDc/ub

dub
dN

∆Ne−iωt, (4.8)

and the amplitude A and phase lag θ are given by

Aeiθ =
1− iωDc/ub

1− a
a−b iωDc/ub

. (4.9)

As in the two-phase model, at low frequencies the steady sliding law is recovered, with A→ 1

and θ→ 0. However, the phase lag decays with θ∼ ω (rather than
√
ω as in the two-phase model)

as the frequency of the forcing decreases. The time lag tends to a constant Dc/ub rather than
continuing to increase with the period of the forcing.

Another difference is that the presence of a direct effect (a 6= 0) means there is always an
instantaneous response (θ= 0) at high frequencies, with a relative amplitude A= 1− b/a that
does not decay to 0 as ω increases, in contrast to the two-phase model. The maximal phase lag
occurs instead on intermediate timescales at a value of θ= arctan(b/2

√
a(a− b)). While this can

be made to match the π/4 of the two-phase model if a= (1 +
√

2)b/2, the behaviour of the RSF
system at rapid forcing frequencies of oscillation is very different.

Time-dependent experiments measuring the amplitude and lag of the velocity response, over
a wide range of forcing frequencies, could be performed on granular till to determine which of
these models provides the better fit. Very rapid oscillations can be used to measure the magnitude
of the instantaneous effect, similar to the results of [16], while very slow oscillations show the
recovery towards steady state and would allow for a robust measure of the phase lag between
the forcing and response. [47] performed a set of oscillatory experiments for the analogous case
of ice-on-rock friction and observed both an increase in amplitude with increasing period and
noted a lag in the frictional response, interpreted through the view of a RSF model fitted per run.
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The dependence of the lag on frequency is an experimentally tractable way to test the validity of
the two models. While rate-and-state provides a convenient reduction of the variable space, it is
important to note that some information about the physics is lost in the process, and interrogate
to what extent this affects the resulting sliding laws if one representative value of the governing
parameters is chosen.

(c) Coupling with ice dynamics
In this analysis, we have imposed a (time-dependent) effective pressure at the ice-till interface.
Since this causes the till to dilate and compact, the volume of water in the till is not fixed - we have
assumed that a sufficient source of water is available at the surface of the till as required, making
this a drained model. Conservation of mass and till dilatancy determines the volume of water
needed to enter the pore space to produce this change in effective pressure. From our simulations
(figures 4c and 5c), 2mm of water per unit surface area are required over a scale of hours, implying
a very modest induced flowrate even in the relatively high-permeability situation illustrated. We
could instead choose to impose the changes in water content, and calculate the resulting pressure
fluctuations - this is the undrained configuration. In this way, we could couple our till model to
a parametrisation of melt and refreezing occurring at the base of the ice, as in the model of [48],
where the water availability in the till depends on the sliding speed of the ice.

Indeed, an exciting potential extension to this work more generally is the dynamic coupling
between the deformation of the ice and the till, since in this paper we have assumed that the
role of the ice is to provide a constant basal traction and normal stress on the till surface, as this
is usually the boundary condition applied in ring-shear tests [28]. However, for the large scale
deformation of ice sheets, the basal sliding speed is a key control on the total ice flux and thus over
long timescales will alter the thickness of the ice above, and in turn set both the ice overburden
pressure (directly proportional to ice depth) and basal shear stress (gradients in surface height).
This coupling [25] could be important for the long term evolution of ice streams, in particular
in response to a pulse of meltwater (such as a lake-drainage event) or the start of a surge, or in
response to the rapid disintegration of an ice-shelf.

Finally, there is the important question of the coupling between the base of the ice and the
surface of the till. While here we have examined the response of the till to the conditions at its
surface, the presence of a layer of water between ice and bed may effectively decouple the two.
As the ice approaches floatation, we would expect an increasing degree of slip between the ice and
till, so that the basal motion of the ice is not fully transmitted to the till. This could lead to a non-
monotonic till flux relationship with pressure such as observed in [49]. Given the importance of
understanding till fluxes when explaining the formation of subglacial bedforms, an extension to
this work would be to consider the three-layer system that incorporates an increasingly deep film
of water at the ice-till interface to more fully understand the transition from deep till deformation
to sliding over a water-filled cavity.

5. Conclusion
We have described a modelling framework for the coupled flow of water through, and the
deformation of, water-saturated subglacial till, starting from physically-based mass and force
balance equations describing the motion of both water and till. Using this model we have
shown that shear dilation, when coupled to the flow of water into the changing pore space,
induces large pressure fluctuations which modulate the normal stress felt by the till, and hence
its ability to deform. We find behaviour such as transient dilatant strengthening appearing as
emergent phenomena of the model. We show this behaviour in both the general formulation and
implementing a granular rheology for the till.

The transient flows induced by dilation and compaction of till significantly alter the
deformation rate and depth of shear away from their steady-state values. This suggests both basal
sliding rates and till transport may be poorly represented by current parametrisations which only



21

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

depend on instantaneous effective pressure. Instead, in the case of fluctuating water pressure,
we predict long-lasting continued shear at depth, followed by dilatant strengthening, altering the
deformation rate and till flux. Accurately quantifying the link between till rheology, ice dynamics,
and subglacial sediment discharge influences our understanding of glacially driven erosion and
mechanisms of bedform construction. Since we are able to calculate analytic expressions for the
modified time-dependent sliding laws in the case of small amplitude periodic forcing, these could
be included in large-scale ice sheet models.

Till is a complex material and characterising its behaviour requires a combination of careful
laboratory, field, and theoretical approaches. Here we have shown the potential for continuum
wet granular mechanics to capture both steady shearing and the transient coupling between water
pressure, till deformation, and porosity variations. In particular, we highlight shear-dilatancy
as an important mechanism driving the decreased diffusivity of effective pressure through
subglacial till, leading to a persistent transient response. However, our quantitative results rely
on parameters that currently lack experimental constraint, suggesting the importance of further
experiments, especially in the case of fluctuating effective pressure that may be most relevant
to glaciers over the daily cycle of melt or tides. Grain-scale simulations can also provide quasi-
experimental data, but our results highlight the need to accurately account for water flow to
produce results that are strikingly different to a dry granular till.
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sample running and plotting scripts.
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